Dyson is designing an electric toothbrush

James Dyson is the inventor behind the cyclonic bagless vacuum cleaner that launched back in 1993.  23 years on the company have continued to grow enhancing the vacuum and innovating and re-engineering products from fans, to hand dryers, to taps and most recently the hairdryer.

james_dyson

In the not too distant future the electric toothbrush scene could be disrupted with the introduction of a Dyson designed and branded brush.

Patent filings and reports suggest that the firm are working on a brush that delivers a fluid such as water into the brush head (be that with or without bristles) to blast away dental debris and dislodge matter via bursts of fluid.

A toothbrush and water flosser rolled into one product, this is essentially what Waterpik have designed, albeit slightly differently, with the Sonic-Fusion flossing toothbrush.

dyson_electric_toothbrush_c

Featuring a spherical reservoir between the handle and the brush head, enough fluid for three long bursts or lots of short ones, could be stored.

The idea according to the patents is that this reservoir would be filled directly from the tap.

dyson_electric_toothbrush_d

The logical fluid to include would be water, but potentially toothpaste, mouthwash or some clever combination could also be delivered under pressure through the nozzle.

Movement of the handle could be logged by sensors, triggering activation of the pump to accurately direct the water into the gap and loosen and remove debris and dental matter.

dyson_electric_toothbrush_g

The patent filings, don’t give any indication if such will ever actually become available from Dyson, but it is possible that the current filings could one day be something we are all using.

Six button controlled modes with variations of manual and auto jet with the pivoting head brushing at up to 6,000 revolutions per minute.

dyson_electric_toothbrush_h

It would appear pressure sensing technology will also be built in.

At heart James Dyson and the team he employs are inventors.  Frustrated by products that don’t work properly, as design engineers they do something about it.  They are all about invention and improvement.

Could there be a Dyson electric toothbrush available in the coming years?

Do the current crop of electric toothbrushes fail to deliver?

Personally I feel that electric toothbrushes generally speaking do a good job and there isn’t glaringly obvious to me that needs improvement.

But, I have seen first hand how the concept of the mouthpiece toothbrush is beginning to challenge the traditional electric toothbrush, as they clean all the teeth at the same time, and make people think differently about oral hygiene, myself included.

There is room for improvement in the dental health care appliances we use at home no doubt.  But just how will Dyson make their mark? Does these technical drawings really show us what they can do?

If Dyson believe in improving and redesigning products that don’t work then they must see scope for improvement to have come up with these in the first place.

I am a fan of what Dyson does and think even if slightly overpriced (their latest Supersonic Hair Dryer retails at £300) the products they make are generally very good and are almost like works of art where you can appreciate the time and effort that went into them.

Generally speaking, the toothbrush and dental market is slow moving and dominated by major brand such as Philips, Oral-B and Colgate.  Oral-B and Philips have begin pushing the boundaries with connected toothbrushes like the Sonicare Flexcare Platinum Connected and the Genius 9000 that both feature Bluetooth connectivity.

What more can Dyson bring and will it cause the big players to rethink their product offerings?!

These patent filings show that this electric toothbrush is really to be a crossover between toothbrush, flosser and oral irrigator.

The small reservoir may be functional but will it actually be all that practical?

I am not sure users will wish to fill up that reservoir each time they begin brushing to get what seems to be a relatively short benefit from it.

Taking the Waterpik flossers as an example.  Although physically attached via a tube, the reservoir is much larger and more practical for flossing and water backed irrigation of the mouth to move dental matter.

The Dyson idea is unlikely to allow for a full and thorough floss of the whole mouth through, which is what you really want or need.  Will it be possible to avoid flossing when using this brush? It would appear not.

International giant Philips have been asking of late what you and I think the future toothbrush will look like in their campaign #YourFutureBrush which asks for thoughts on what the toothbrush of 2050 will look like.

The toothbrush has evolved over the years. Since the first brushes in 3500BC to the modern day brushes, most rapid change has come about in the last 100 years.  We have documented the history of the toothbrush, could the Dyson electric super-toothbrush be the next milestone in this long history?

It could be a few years before we see the brush if at all, it is still relatively early stages, but the filing for patents must signify a serious intend and it seems a logical fit and expansion to their product range.

Electric Toothbrushes are our thing here at Electric Teeth, so rest assured that as soon as there are any developments we will be keeping you up to date.

Via EveningStandard


More information

For those who want to read more below are links to the patents along with a detailed description of the concept in Dyson engineers’ own words.

Patent Application Numbers:

Engineer Description

Field of Invention

The present invention relates to a cleaning appliance. The cleaning appliance is preferably a handheld cleaning appliance, and is preferably a surface treating appliance. In preferred embodiments of the invention, the appliance is a dental cleaning appliance. In a preferred embodiment, the appliance is an electric toothbrush having a fluid delivery system for delivering a fluid to the teeth of the user. This fluid may be toothpaste, or a fluid for improved interproximal cleaning. Alternatively, the appliance may not include any bristles or other elements for brushing teeth, and may be in the form of a dedicated interproximal cleaning appliance. The invention also relates to a cleaning tool for use with a dental cleaning appliance, and to a handle for use with a dental cleaning appliance.

Background:

Electric toothbrushes generally comprise a cleaning tool which is connected to a handle. The cleaning tool comprises a stem and a brush head bearing bristles for brushing teeth. The brush head comprises a static section which is connected to the stem, and at least one moveable section which is moveable relative to the static section, for example with one of a reciprocating, oscillating, vibrating, pivoting or rotating motion, to impart a brushing movement to bristles mounted thereon. The stem houses a drive shaft which couples with a transmission unit within the handle. The transmission unit is in turn connected to a motor, which is driven by a battery housed within the handle. The drive shaft and the transmission unit convert rotary or vibratory motion of the motor into the desired movement of the moveable section of the brush head relative to the static section of the brush head.

It is known to incorporate into an electric toothbrush an assembly for generating a jet of fluid for interproximal cleaning. For example, U.S. Pat. No. 8,522,384 describes an electric toothbrush in which the handle of the toothbrush defines a fluid chamber for storing a liquid such as water, and a slidable cover for enabling the fluid chamber to be accessed for replenishment by a user. A fluid path connects the fluid chamber to a nozzle located on a static portion of the brush head. A pump located within the fluid path is actuated upon user operation of an actuator on the handle to pump fluid from the fluid chamber to the nozzle for release under pressure from the nozzle.

Summary of invention

In a first aspect, the present invention provides a dental cleaning appliance comprising a handle, a fluid delivery system for delivering a burst of working fluid to the teeth of a user, at least part of the fluid delivery system being moveable relative to the handle as the appliance is moved along the teeth of the user, a sensor for providing an output which varies with movement of said at least part of the fluid delivery system relative to the handle, and a control circuit for actuating the delivery of working fluid to the teeth of the user depending on the output from the sensor.

A part of the fluid delivery system which is moveable relative to the handle preferably comprises a nozzle from which the burst of working fluid is delivered to the teeth of a user. The nozzle preferably extends along a nozzle axis, which passes through a fluid outlet located at the tip of the nozzle. The nozzle axis may be aligned generally orthogonal to the longitudinal axis of the handle.

The nozzle is preferably formed from resilient material, such as an elastomeric material or a rubber.

The nozzle may be moveable relative to the handle in such a manner that the fluid outlet can move relative to the nozzle axis. For example, the nozzle may be configured to bend. For example, as the nozzle is moved along the teeth of a user during use of the appliance, the tip of the nozzle may deflect relative to the base of the nozzle, and especially when the nozzle engages a side of a tooth after having entered an interproximal gap. This deflection of the nozzle relative to the handle may cause the output from the sensor to vary, in response to which the control circuit may actuate the delivery of a burst of working fluid to the teeth of the user to dislodge matter located within the gap.

Alternatively, the nozzle may be moveable relative to the handle in a direction which extends generally parallel to or generally along the nozzle axis. The nozzle is preferably biased for movement relative to the handle in such a direction that the nozzle is urged against a user’s teeth during use of the appliance. As the nozzle enters an interproximal gap as the nozzle is moved along the user’s teeth, this movement of the nozzle relative to the handle causes the output from the sensor to vary, in response to which the control circuit actuates the delivery of a burst of working fluid to the teeth of the user to dislodge matter located within the gap.

The sensor may be arranged to detect directly the movement of the nozzle relative to the handle. For example, the sensor may be located adjacent to the nozzle. Alternatively, the sensor may be arranged to detect movement of a component which is connected to, and moveable with, the nozzle. For example, an arm may be connected to the nozzle, and the sensor may be arranged to detect movement of the arm relative to the handle.

A part of the fluid delivery system which is moveable relative to the handle preferably comprises a fluid conduit for conveying the burst of working fluid to the nozzle. The nozzle is preferably moveable with the fluid conduit. For example, the fluid conduit may be connected directly to the nozzle. As an alternative, the end of the fluid conduit may engage or abut the base of the nozzle so that the nozzle is pushed along the nozzle axis in response to movement of the fluid conduit relative to the handle.

The nozzle is preferably biased for movement relative to the handle in a direction which urges the nozzle against a user’s teeth during use of the appliance. As mentioned above, the nozzle may be connected to an arm, and that arm may be biased for movement relative to the handle in a direction which urges the nozzle against a user’s teeth during use of the appliance. For example, the arm may be urged to move in that direction by a resilient member which engages the arm. Alternatively, the arm may be deformed elastically in such a manner that relaxation of the arm urges the nozzle against the user’s teeth. In this case, the fluid conduit moves with the nozzle as it is urged towards the user’s teeth.

In a preferred embodiment, the fluid conduit is biased for movement relative to the handle in a direction which urges the nozzle against a user’s teeth during use of the appliance. This fluid conduit may thus server to bias the nozzle for movement relative to the handle in such a direction that the nozzle is urged against a user’s teeth during use of the appliance. As discussed above, the nozzle may be connected to the end of the fluid conduit so that it moves with the fluid conduit relative to the handle. Alternatively, the nozzle may be secured to a body of the appliance by resilient means, for example a resilient annular flange extending outwardly from the nozzle, which urges the nozzle against the end of the fluid conduit so that it moves with the fluid conduit as the fluid conduit moves relative to the handle. This flange may also provide a seal between the nozzle and the body which inhibits the ingress of ejected working fluid or other material into the body of the appliance from around the nozzle.

The fluid conduit may be moveable relative to the handle in one of a number of different ways. For example, the fluid conduit may be slidable, rotatable or otherwise translatable relative to the handle. Alternatively, the fluid conduit may be extendable or expandable.

In a second aspect, the present invention provides a dental cleaning appliance comprising a handle, and a fluid delivery system comprising a nozzle for delivering a burst of working fluid to the teeth of a user, and a fluid conduit for conveying working fluid to the nozzle, the fluid conduit being moveable relative to the handle, the nozzle being moveable with the fluid conduit, the fluid conduit being biased for movement in a direction which urges the nozzle against a user\’s teeth during use of the appliance.

In a preferred example, the fluid conduit is moveable relative to the handle about an axis. The fluid conduit is preferably pivotable about the axis. This axis is preferably substantially orthogonal to the longitudinal axis of the handle. The axis is preferably angled to the nozzle axis, and is more preferably substantially orthogonal to the nozzle axis.

The fluid conduit preferably has a rigidity which is such that the fluid conduit does not deform, bend or kink as the fluid conduit moves relative to the handle or as the nozzle is urged against the teeth of the user during use of the appliance. The fluid conduit is preferably formed from one of metallic and plastics material. However, if an arm is used to bias the nozzle towards the user\’s teeth, the fluid conduit may be formed from a more flexible material to allow the fluid conduit to move freely relative to the handle.

The fluid conduit is preferably biased for movement relative to the handle by a resilient member. The resilient member may engage a component to which the fluid conduit is connected. For example, the nozzle may be connected to an arm, and that arm may be biased for movement relative to the handle. As the arm moves relative to the handle, the fluid conduit may move relative to the handle, preferably about an axis. Alternatively, the resilient member may engage the fluid conduit. The resilient member preferably exerts a force on the fluid conduit, or the arm, which is of a sufficient magnitude to allow the nozzle to move, against the biasing force of the resilient member, as it is pressed against the user\’s teeth, and without exerting an excessive force on the teeth which is uncomfortable for the user.

The resilient member may be located between the body and the fluid conduit, so as to urge the fluid conduit to move about the axis in a direction which urges the nozzle against a user\’s teeth during use of the appliance. The resilient member may be in the form of a spring or another elastic element. The resilient member may engage the fluid conduit directly, or it may engage a component of the appliance which is connected to the fluid conduit and moveable therewith. Such a component may be a support for supporting the fluid conduit for movement relative to the handle, or an arm connected to the fluid conduit.

In a preferred embodiment, the resilient member forms a part of the fluid delivery system, and is preferably in the form of a resilient fluid conduit which is connected to the pivotable, or moveable, fluid conduit. That resilient fluid conduit may be twisted, bent, compressed or otherwise deformed so as to exert a force on the pivotable fluid conduit which urges it to move relative to the handle in a direction which urges the nozzle against a user\’s teeth during use of the appliance.

Thus, the fluid delivery system may comprise a nozzle from which the burst of working fluid is delivered to the teeth of a user, a relatively rigid fluid conduit which is pivotable about an axis, and a relatively flexible, resilient fluid conduit for urging the pivotable fluid conduit to pivot about the axis in a direction which urges the nozzle against a user\’s teeth during use of the appliance.

The pivotable fluid conduit is preferably located between the nozzle and the resilient fluid conduit. For example the resilient fluid conduit may be connected to one end of the pivotable fluid conduit, with the nozzle being connected to, or otherwise engaging, the other end of the pivotable fluid conduit.

The pivotable fluid conduit preferably has a plurality of sections. For example, the fluid conduit may have a first section and a second section which extends in a different direction to the first section. In other words, the fluid conduit is preferably non-linear. The resilient fluid conduit is preferably connected to the first section. The second section may be angled to the first section, and may be substantially orthogonal to the first section. Alternatively, the second section may be curved. The nozzle is preferably connected to, or otherwise engages, the second section, and so at least part of the second section is preferably substantially collinear with the nozzle. Where the second section is curved, at least an end portion of the second section, which engages the nozzle, may be collinear with the nozzle. The first section is preferably straight, and is preferably longer than the second section, and so the pivotable fluid conduit may be generally L-shaped.

The sensor is preferably arranged to provide an output which varies with movement of a moveable part of the fluid delivery system relative to the handle, and so, in this embodiment, with movement of one of the nozzle, the pivotable fluid conduit, and the resilient fluid conduit. The sensor may be in the form of a motion detector.

The sensor may be arranged to detect motion of a moveable part of the fluid delivery system directly. For example, the sensor may be in the form of a light detector, such a camera or a light sensor, for receiving light reflected from the moveable part of the fluid delivery system. Alternatively, the moveable part of the fluid delivery system may be formed from magnetic material, with the sensor being arranged to detect the movement of that magnetic part of the fluid delivery system from the variation in the magnetic field experienced by the sensor. For example, the sensor may be a Hall effect sensor.

Alternatively, the sensor may be arranged to detect motion of a component which is moveable with the moveable part of the fluid delivery system. That component may comprise a light reflective component or light emitting component. Alternatively, the component may comprise a deformable member which is connected to the moveable part of the fluid delivery system, and the sensor may be arranged to detect the deformation of that deformable member. For example, the deformable member may be in the form of an elastic rod which is connected to the moveable part of the fluid delivery system, and the sensor may be in the form of a strain gauge for outputting a signal which varies with the strain on the deformable member.

Preferably, the component comprises a magnet, and the sensor is preferably arranged to detect the movement of the magnet from the variation in the magnetic field experienced by the sensor as the magnet moves relative to the sensor. The magnet may be connected directly to the moveable part of the fluid delivery system. Alternatively, to facilitate assembly the magnet may be connected to a component which is itself connected to, or carried by, a moveable part of the fluid delivery system. For example, the appliance may comprise a support for supporting a moveable part of the fluid delivery system for movement relative to the handle. The support is preferably moveable relative to the handle with the moveable part of the fluid delivery system. In a preferred embodiment, the support is connected to the pivotable fluid conduit.

The magnet may be connected directly to the support. However in a preferred embodiment the appliance comprises an arm which connected to the support for movement therewith, with the magnet being connected to, or defining, part of the arm. The magnet is preferably connected to a free end of the arm.

The arm is preferably moveable relative to the support. The arm preferably has a first end which is connected to the support for movement therewith, and a second end which is remote from the first end. A magnet, or magnetic material, is preferably located at the second end of the arm. The arm is preferably pivotably moveable relative to the support about a second pivot axis. The second pivot axis may be located at the first end of the arm, or it may be located between the ends of the arms, with the distance between the second pivot axis and the second end of the arm being greater than the distance between the second pivot axis and the first end of the arm. As a result, for a given rotation of the arm about the second pivot axis, which rotation results from the pivoting movement of the support relative to the handle, the extent of the movement of the second end of the arm about the second pivot axis is greater than the extent of the movement of the support relative to the handle.

This can enable relatively small movements of the moveable part of the fluid delivery system relative to the handle to be converted into relatively large movements of the second end of the arm relative to the handle. This can facilitate the detection of the movement of the moveable part of the fluid delivery system relative to the handle, and can enable the sensor to be located at a convenient location within the appliance for detecting the movement of the second end of the arm. For example, the sensor may be located in the handle of the appliance to facilitate its connection to the control circuit, which is also preferably located in the handle of the appliance. A battery for supplying power to the control circuit is also preferably located in the handle of the appliance. The battery is preferably a rechargeable battery.

The appliance preferably comprises a head, and a stem extending between the head and the handle. The nozzle preferably protrudes outwardly from the head. The resilient fluid conduit is preferably located in the stem. The pivotable fluid conduit thus extends between the stem and the head. In a preferred embodiment, the first section of the pivotable fluid conduit is located in the stem, and the second portion of the pivotable fluid conduit is located in the head.

The nozzle is preferably moveable relative to the head. The nozzle is preferably biased for movement relative to the head in a direction which extends away from the head.

The nozzle is preferably moveable between a distal position and a proximal position relative to the head. The nozzle is preferably biased for movement towards the distal position. The control circuit is preferably configured to actuate the delivery of working fluid to the teeth of the user in response to movement of the nozzle to, or from, the distal position.

The control circuit may be configured to actuate the delivery of working fluid to the teeth of the user depending on the magnitude of the output from the sensor. Preferably, the control circuit is configured to actuate the delivery of working fluid to the teeth of the user depending on the rate of change of the output from the sensor. The output from the sensor is preferably in the form of a voltage.

Jon Love

About Jon Love

Jon is a leading voice on electric toothbrushes and has been quoted by mainstream media publications for his opinions and expertise.

Having handled & tested hundreds of products there really is very little he does not know about them.

Passionate about business and helping others, Jon has been involved in various online enterprises since the early 2000s.

After spending 12 years in consumer technology, it was in 2014 that he focused his attention on dental health, having experienced first-hand the challenge of choosing a new toothbrush.

Read More

Leave a comment or question